W00 COMMERCE
Developers

WooCommerce for Developers
Extend WooCommerce sites with code

Igor Benic
This book is for sale at http://leanpub.com/woodev

This version was published on 2018-05-28

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 Igor Beni¢

http://leanpub.com/woodev
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Aboutthe Book 1
Howtoreadandusethecode 1
WooCommerce 3.X 3

The WooDev Project 4
Requirements L e 4

Custom Shipping Method 5
Shipping APL L 5
Defining the Shipping Method Lo L 7
Shipping Class 8
Adding our Shipping Class to all other Shipping Methods 27
On Activation 28
On Deactivation 31

Custom Payment Gateway oo 33
Payment Gateway APT 33
Braintree e 34
PCI Compliance - be legit theeasy way 35
Braintree PHP SDK 36
Payment Class Base 36
Including Payment Method in WooCommerce 37
ASSEES . . L e 37
Includes 38
Constructor Method 39
Settings Fields 41
Configuring Braintree 42
Enqueueing Style and Scripts L 42
Credit Card Fields 43
Credit Card Script 44
Customizing WooCommerce Form Submittion 45
Process Payment L 46

Printing Order Details from the Adminarea 49

CONTENTS

Adding the Print Button L 49
Adding the Style and the JavaScript 50
Creating the HTML for AJAX Response 52
Managing Stock with 3rd Party Serviceo L. 56
Starting our Stock Manager L 57
Creating the Product Inventory Field 58
Checking the Stock Level 61
Getting the Stock Level from Service L. 63
Courses L 67

Changelog 68

About the Book

Hi there! Thank you for purchasing this book. Not only you have supported the work of a developer
but you have invested in your career!

This book will teach you how to extend WooCommerce and understand how WooCommerce is
functioning. You will learn how to develop for WooCoomerce using already defined actions and
filters (hooks) that are defined by WooCommerce but also how to implement your own hooks within
your plugins.

The whole book will present a specific project that will cover various specific topics. We could learn
each topic separately but defining a specific project will require us to focus more on the details. By
using this strategy you will be able to learn how to think and develop for specific purposes.

The specific topics that will be discussed and developed here are hard to find on the internet so be
sure to study them good because they could come in handy from time to time.

Code in this book will be written in PHP and JavaScript mostly but some HTML and CSS could be
seen in some parts.

All the code that you will see in this book can be used outside of it. I am giving you the permission
to use them as you want (for non-commercial and commercial projects).

This book was not written by a member of WooCommerce or WooThemes team but only by me
(Igor Benic) who is using WooCommerce in WordPress development.

How to read and use the code

Most of chapters (articles, tutorials) here are articles with code examples.

They are written in a way that you, as a reader, can easily understand every part of it. We are always
starting from nothing and then by the end of the article you will have a usable code that you can
easily edit to your own needs.

Code examples are written in separate boxes from text such as:
This is a line

but mostly the code examples will be consisted of much more lines such as:

About the Book 2

<?php
This is a code example

$var = "variable in a code example";

Since a lot of these examples use the existing code and many of those code lines will be wider than
this book’s page, you will see sometimes a symbol ‘\’ that indicates the next line to be the part of
the line before.

When you see that symbol, ignore it (delete it without adding space) and continue to insert the code
along the same line.

Here is an example of a long variable value that should be written in one line:

<?php
$long_variable = "This is a variable with a very long value to see how the same \
line is extended in more lines in this book.";

In the most articles, we will create a solution through the whole article so bare in mind that some
of the code will come after a previous one.

Some code will not be a new code, but actually a redefined or refactored version of a previous code
in the same article.

If you apply, copy or write the code in the article into another file, please be aware that only one
opening php tag is needed. The opening tag will be used again, only if there was a need to close the
previous one, for example: to write some regular HTML.

To show you what I mean let’s use an example of this two code examples:

Code Example 1

<?php
$variableA = "Variable A";

Code Example 2

<?php
$variableB = "Variable B";

If we want to place them in one file, we would use only the first opening php tag like this:

About the Book 3

<?php
$variableA = "Variable A";
$variableB = "Variable B";

WooCommerce 3.X

I have decided to write only for up-to-date WooCommerce version. If you ever need to add a part to
support old WooCommerce 2.6.x code or even older, than you can use this code to wrap the features:

if(version_compare(WC()->version, ¢3.0.0°, '<')) {
// backward compatibility here.

The WooDev Project

WooDev is just a name combined from the title of this book “WooCommerce for Developers”.
WooDev will be the main project for which we will create different children projects such as:

Shipping Method
Restrictions for the shipping method

General restriction on checkout

Product Type
Product Type connected to other WordPress content
Product Type connected to an external service

Requirements

To follow this book you should have WordPress installed and WooCommerce activated. Be sure to
code on your local machine or development environment since everything in here should be also
tested on a staging server before using it on your production server.

The book will be refreshed when a refactoring is needed. You should have the latest versions of
WordPress and WooCommerce installed.

Custom Shipping Method

Creating WooCommerce Shipping methods can be really fun. But to have fun you first need to know
what your shipping method can do or can’t do.

This is really important before entering any code. I want to be sure that you understand what
WooCommerce Shipping Class can do so we will go through all the Shipping Class code.

The basic abstract class WC_Shipping_Method can be found in woocommerce/includes/abstract-
s/abstract-wc-shipping-method.php

Shipping API

Since you can extend or modify each class as you want, you can even modify some methods in the
Shipping Class.

We will not go into modification of some previously defined methods in the abstract class, but if you
would like to see how something was modified you can go into the folder includes/shipping inside
woocommerce and look at each of those methods how they were defined.

There are still some methods that should be defined when creating your custom Shipping Method.
Before we go into that, we should learn about the important attributes of our shipping class:

+ $id - A required unique identifier for the shipping class

« $method_title - Title that will show in the admin area

« $title - Title that will be shown on the cart or checkout page

+ $method_description - Used to describe our shipping method in the admin area

+ $availablity - Indicator if the shipping method is available or not

+ $countries - Array of countries that this shipping method is shipping to or not. Depending
on $availability

« $tax_status - if set to taxable, the tax will be charged is possible

+ $minimum_fee - a fee that will be charged when using this method when there are not other
fees set,

+ $enabled - indicator if this shipping method is enabled or not

« $instance_id - we can have more than one shipping method from the same class

« $instance_form_fields - fields that we use for settings

+ $instance_settings - instance settings from database

+ $supports - what this shipping method supports (settings, shipping-zones, instance-settings
and/or instance-settings-modal)

Custom Shipping Method 6
What are those supports settings?

« settings - backward compatibility for old versions of WooCommerce

« shipping-zones - functionality for zones + instances

- instance-settings - instance settings used instead of settings

« instance-settings-modal - settings are opened in the modal and not on separate page

Now that you know which attributes are the most important ones and which you can easily set, we
should also learn about some of the methods you should also set if needed:

« __ construct - the constructor method will set the id and some other important attribues
« init - used to initialise the shipping fields and get the values for that fields
« init_form_fields - used to define all the form fields for our shipping method

« calculate_shipping - this, besides the constructor method, has to be set to register or shipping
method cost or costs. Use the method add_rate to add the rates inside calculate_shipping
method.

Countries and Availability

As described above, if there is an array of countries the shipping method can become available or
not for those countries.

This is easily set by using the attribute $availability. We are setting that attribute when defining
our own custom Shipping Method class.

This attribute can be left as it is without setting it in our own custom class or we can define it as
follows:

« specific - Ships only to set countries
« including - Ships only to set countries
« excluding - Ships to all other countries than the set ones

The array of countries set with their ISO Codes. To find out about the ISO Codes of the countries
you have to set use a site such as https://countrycode.org/".

! countrycode.org

countrycode.org
countrycode.org

Custom Shipping Method 7

Defining the Shipping Method

It is very important to define your shipping method. By defining your shipping method, I mean to
define how our shipping method will calculate the cost, how much weight can it ship or which is
the maximum dimension of our packages.

What about the countries and the availability of our shipping method? We will create a real world
shipping method. I will use a shipping company in my own country TISAK.

TISAK operates in zones. Each country has their own zone and each zone has its own price. There
are also weight and dimension limitations so we need to be aware of that also.

TISAK ships packages so each package is defined by their maximum dimensions and weight. We
will not allow our customer to choose which package to use. We will instead automatically set which
package to use based on the weight and dimension since that will be the package we will have to
use when shipping with TISAK.

Since the manual for TISAK is written on Croatian I will not show it here. I can only say that TISAK
does ship to around 123 countries + Croatia.

The cost of shipping is differently defined when shipping inside Croatia or when shipping to other
countries. We will have them inside the countries array. There are also different price tags for each
zone and each package.

Packages which TISAK uses are:

o Small
« Medium

« Large
When shipping inside Croatia prices for each package are:

« Small - 15kn (~ $2)
« Medium - 20kn (~ $3)
« Large - 25kn (~ $4)

When shipping to other countries prices for each package are also defined by zones:

o Zone 0
— Small - 95kn (~ $15)
— Medium - 105 (~ $16)
— Large - 135kn (~ $21)
o Zone 1
— Small - 220kn (~ $34)

Custom Shipping Method 8

— Medium - 250kn (~ $39)
— Large - 275 (~ $43)

« Zone 2
— Small - 260kn (~ $40)
— Medium - 300kn (~ $45)
- Large - 360kn (~ $55)

o Zone 3
— Small - 470kn (~ $72)
— Medium - 550kn (~ $85)
- Large - 790kn (~ $122)

Since we will automatically assign which package will be used when calculating the shipping cost
we need to know the dimensions (in cm) of each package (length x width x height):

e Small - 20x20x15
o Medium - 30x20x20
« Large - 40x30x15

[have used the unit ¢cm since that is how TISAK has defined their package dimensions. You can use
a different one as long as it is allowed in WooCommerce.

The last part that we should define is the weight. TISAK does not define the cost of their shipping
by weight but they do have a limit of maximum 10kg on any package. If our cart items surpass this
limit in weight, then our shipping method will not be available.

Now that we have defined our shipping method, we can start coding! Prepare your developing
environment and let’s start coding.

Shipping Class

We will start first off with a simple WordPress plugin definition. Create your own plugin folder and
give it a name to your liking. [will call it woodev_shipping_method. Inside that folder create a file
with the same name and the php extension.

© 00 39 O O b W N =

RGN
= o

Custom Shipping Method 9

| NN
FOLDERS

woodev_shipping_method.php

Folder and File for Custom Shipping Method

Let’s enter the plugins’ definition inside our newly created file:

<?php

J*

Plugin Name: WooCommerce For Developers Custom Shipping

Plugin URI: https://leanpub.com/woodev

Description: A Custom Shipping Method done in the "WooCommerce for Developers" e\
Book

Version: 1.0

Author: Igor BeniAt

Author URI: http://ibenic.com

textdomain: woodev_shipping

*/

Go to your WordPress admin area inside the menu Plugins and activate your newly create plugin.
By activating it, all our changes can be seen instantly on our website.

Make sure WooCommerce is active

The headline kind of tells you what is going to be done here, right? We will check if WooCommerce
is active and then proceed with our functionality.

There is no point in adding our Shipping Method to WooCommerce if WooCommerce is not installed
and active. So let’s add this chunk of code next:

© 00 N O U b W N =

0 I O O b W N =

Custom Shipping Method 10

J Rk
* Check 1f WooCommerce is active
*/

if (in_array('woocommerce/woocommerce.php',

apply_filters('active_plugins', get_option('active_plugins')))) {

// our code will go here because we are sure WooCommerce is active

Basically, we get all the active plugins and then check if WooCommerce is there by using plugin_-
folder/plugin_file.php string that is saved for every activated plugin.

The Base Class & Shipping Settings

We will define a function that will hold the definition of our custom shipping method and hook
it to a WooCommerce action woocommerce_shipping_init which is used to get all registered
WooCommerce Shipping Methods.

function woodev_tisak_shipping() {
if (! class_exists('WOODEV_TISAK_Shipping')) {
class WOODEV_TISAK_Shipping extends WC_Shipping_Method {

}

add_action('woocommerce_shipping_init', 'woodev_tisak_shipping');

In our function woodev_tisak_shipping we have defined a new class WOODEV_TISAK_Shipping
that extends the abtract shipping class.

Now we need to add the constructor method inside our new class:

O N O O & W N~

B S s sy
©O© 00 9 O O » WO NN~ O O

0 N O O & W N =~

RN
N »~ O ©

13

Custom Shipping Method 11

/)
class WOODEV_TISAK_Shipping extends WC_Shipping_Method {

Ak
* Constructor for your shipping class
*

* @access public
* @return void
*/

public function __construct() {

$this->id = 'woodev_tisak_shipping"';
$this->method_title = _ ('TISAK Shipping', 'woodev_shipping');
$this->method_description = __('TISAK Shipping Settings', 'woodev_shipping' \
);
$this->title = _ ("TISAK","woodev_shipping");
$this->init();
$this->enabled = true;
}
VA

So here we have defined the unique id of our shipping method, title that will be displayed in the
admin area, description that will be displayed in the admin area and the title that will be displayed
on our cart or checkout pages.

Method init will be used to get all the settings and settings’ fields for this shipping method. The last
attribute we have defined is enabled which enables our shipping method to be used for shipping
costs.

Let’s define now our method init so that we can use our settings:

V2
ety
* Init your settings
*
* @access public
* @return void
*/
function init() {
$this->init_form_fields();
$this->init_settings();
// Save settings in admin if you have any defined
add_action('woocommerce_update_options_shipping_' . $this->id,
array($this, 'process_admin_options'));

14
15

© 00 = O U b W N =

SN
N O O b W N =~ O

Custom Shipping Method 12

}
/AR

In this method we are calling another method init form_fields that is used to set our shipping
settings’ fields. We are also calling the method init_settings to get all our settings that we can use
when calculating the shipping cost.

Finally we are hooking the method process_admin_options so that all our fields values are saved to
database in the admin area.

So, how to define our fields for this shipping method?

Shipping Settings’ Fields

We will construct an array of field definitions and set it to our attribute #form_fields. Let’s define
our form fields:

/S
/**
* Settings Fields
* @return void
*/
function init_form_fields() {
$this->form_fields = array(
'enable' => array(
"title' => __('Enable', 'woodev_shipping'),
"type' => 'checkbox',
"description' => __('Enable this shipping.', 'woodev_shipping'),
'"default' => 'no'

),

}
/AR

We have set only one field. The name (id) of our field is enable. Everything else is self explanatory
so I will not go into that.

Now that we have our field set, we can enable our shipping method within the admin area. To reflect
that setting, we need to modify our contructor method so that our attribute enabled is getting set
from our settings:

O N O O & W N~

B S s sy
©O© 00 9 O O » WO NN~ O O

S © W0 I O O b W N =

[N

Custom Shipping Method 13

/)
class WOODEV_TISAK_Shipping extends WC_Shipping_Method {

JR*

* Constructor for your shipping class

* @access public

* @return void
*/
public function __construct() {
$this->id = 'woodev_tisak_shipping"';
$this->method_title = _ ('TISAK Shipping', 'woodev_shipping');
$this->method_description = __('TISAK Shipping Settings', 'woodev_shipping' \
);
$this->title = _ ("TISAK","woodev_shipping");
$this->init();
$this->enabled = $this->settings["enable"];
}
VA

OK, now we have defined our shipping settings and our base class. We still have to define our method
to calculate the shipping cost and set all the available countries.

Let’s go with the second requirement.

Shipping Countries

We will now create our own custom function that will return an associative array where keys will
be the countries ISO codes and values will be the corresponding zones. Place this function below
our class definition.

This is a long list:

J*k
* Array with all country codes where this shipping method is shipping
* @return array country codes with zones

*/

function woodev_shipping_countries(){

return array(

'BA' => 0,
XK' => 0,
'ME' => 0,

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

Custom Shipping Method
'RS' => 0,
'SI' => 0,
AT => 1,
'BE' => 1,
'BG' => 1,
'cZ o= 1,
DK' => 1,
"FR' => 1,
'DE' => 1,
THU' => 1,
T =>4,
'NL' =>4,
PLY =>4,
'RO" => 1,
'SK'=> 1,
'GB' => 1,
'EE' => 2,
'FI' => 2,
'GR' => 2,
"IET => 2,
TRV N
LT = 2,
‘LUt = 2,
"PT" => 2,
'ES' => 2,
'SE' => 2,
AP => 3,
‘AL' => 3,
'DZ' => 3,
"AS' => 3,
'AD' => 3,
"AO" => 3,
'AI' => 3,
"AG' => 3,
'"AR' => 3,
'AM' => 3,
AW => 3,
"AU" => 3,
'AZ' => 3,
'BS' => 3,
'BH' => 3,
'BD' => 3

~

14

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
1
T2
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Custom Shipping Method
'BB' => 3,
'‘BY' => 3,
'BZ' => 3,
'BJ' => 3,
'BM' => 3,
'BT' => 3,
'BO" => 3,
'BQ" => 3,
"BW' => 3,
'BR' => 3,
'"VG' => 3,
'BN' => 3,
'BF' => 3,
'BI' => 3,
'KH' => 3,
"M => 3,
"IC' => 3,
'CV' => 3,
'KY' = 3,
'CF' => 3,
"D => 3,
'CL' => 3,
'CN' => 3,
'co' => 3,
KM => 3,
'CG' => 3,
'CD' => 3,
'CK' => 3,
'CR'" => 3,
'CI' => 3,
"CW' => 3,
'CY' => 3,
'DJ" => 3,
‘DM’ => 3,
'DO" => 3,
"TL => 3,
'EC' => 3,
'"EG' => 3,
'SV' => 3,
'GQ' => 3,
'ER' => 3,
"ET" => 3

~

15

95

96

o7

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Custom Shipping Method
'"FO' => 3,
'FJ' => 3,
"PF' => 3,
'"GA' => 3,
'"GM' => 3,
'"GE' => 3,
'"GH' => 3,
'GI' => 3,
'GL' => 3,
'GD' => 3,
'GP' => 3,
'GU' => 3,
'"GT' => 3,
'"GN' => 3,
"GW' => 3,
'GY' => 3,
'HT' => 3,
"HN' => 3,
HK' = 3,
"IS' => 3,
"IN' => 3,
'1D' => 3,
'1Q' => 3,
"ILY => 3,
"IN => 3,
'JP' => 3,
'Jo' => 3,
'KZ' => 3,
'KE' => 3,
'KI' => 3,
'KR' => 3,
FM' => 3,
KW' o=> 3,
'KG' => 3,
"LA' => 3,
'LB' => 3,
‘LS’ = 3,
'LR' => 3,
LY' = 3,
LIt o= 3,
'"MO' => 3,
"MK" => 3

~

16

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178

Custom Shipping Method
'"MG' => 3,
MW => 3,
"MY' => 3,
MV => 3,
'"ML' => 3,
'MT' => 3,
MH' => 3,
'"MQ' => 3,
'MR' => 3,
MU' => 3,
YT => 3,
MY => 3,
'MD' => 3,
'"MC' => 3,
'"MN' => 3,
'MS' => 3,
'MA' => 3,
Mz => 3,
MM => 3,
'NA' => 3,
‘NPT => 3,
'KN' => 3,
'"NC' => 3,
'"NZ' => 3,
'NI' => 3,
'NE' => 3,
"NG' => 3,
'"MP' => 3,
"NO' => 3,
'oM' => 3,
'PK' => 3,
PW' => 3,
'PA' => 3,
'"PG' => 3,
'PY' = 3,
'PE' => 3,
'PH' => 3,
'PR' => 3,
QAT = 3,
'RE' => 3,
'RU' => 3,
'RW' => 3

~

17

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Custom Shipping Method
'ws' => 3,
'SM' => 3,
'SA' => 3,
"SN' => 3,
'SC' => 3,
'SLT => 3,
'SG' => 3,
'SB' => 3,
'ZA' => 3,
"LK' => 3,
'BL' => 3,
'Lc' => 3,
'SX' => 3,
MF => 3,
'"VC' => 3,
'SR' => 3,
'Sz => 3,
'CH' => 3,
TW' = 3,
Ty => 3,
'TZ => 3,
"TH' => 3,
'TG' => 3,
'"TO" => 3,
TT => 3,
"IN => 3,
'"TR' => 3,
TM' => 3,
'"TC' => 3,
TV => 3,
'uG' => 3,
"UA' => 3,
'AE' => 3,
"uy' => 3,
"z = 3,
"' => 3,
'VE' => 3,
'WN' => 3,
'"VG' => 3,
"WE' = 3,
"YE' => 3,
"ZM" => 3

~

18

221
222
223

O© 00 9 O O B W N =~

(AN
N =~ O

Custom Shipping Method 19

W' => 3,
);

Now that we have our function for countries, we can assign the country codes to the attribute
$countries and set the attribute $availability to including. We will do that in our method init:

function init() {
$this->init_form_fields();
$this->init_settings();
$country_codes = woodev_shipping_countries();
$this->countries = array_keys($country_codes);
$this->countries[] = 'HR';

$this->availability = 'including';

// Save settings in admin if you have any defined
add_action('woocommerce_update_options_shipping_' . $this->id,
array($this, 'process_admin_options'));

First, we get the array of countries with their zones. After that, we get only the keys in that array
which are actually only the country codes. That array of keys will be then set to the attribute
$countries.

Availability is then set to including so that this shipping method will be available only for those
countries we have set.

Getting the Right Package

Let’s define a method that will be used to get the right package from our dimensions, maximum
length, width or height. This method will return false if we could not get any package from provided
parameters.

O N O O & W N~

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Custom Shipping Method 20

Veis
* Get the package for TISAK
* @param number $dimension Dimension volume (length x width x height)
* @param number $maximumLength Maximum length from all items in our cart
* @param number $maximumWidth Maximum width from all items in our cart
* @param number $maximumHeight Maximum height from all items in our cart
* @return mixed Returns false if there is no package
* that can be selected
*/
public function getTisakPackage(
$dimension,
$maximumLength,
$maximumWidth,

$maximumHeight) {

$packageS = 20 * 20 * 15;
$packageM = 30 * 20 * 20;
$packagel = 40 * 30 * 15;

if($maximumLength > 40){
return false;

if($maximumWidth > 30){
return false;

if($maximumHeight > 20) {
return false;

if($dimension <= $packageS) {

return 's’';

} elseif ($dimension <= $packageM) {

[
7

return 'm
} elseif ($dimension <= $packagelL) {

return '1"';

!

43
44
45
46
47

© 00 N O U b W N =

e
wWw N =~

Custom Shipping Method 21

return false;

In this method we are passing the mentioned parameters and define the maximum dimensions for
each package ($packageS, $packageM and $packageL). If any maximum parameter is higher than
the maximum possible (from any package) then we do not have a shippable package.

Getting the Price for Package

We have to create a method or methods to get the right price for the selected package based on the
country where we need to ship.

Since each package has its own price for Croatia and a different one for every zone we will need to
define two different methods for national and international shipping.

Shipping value for Croatia is easily calculated for each package since there are no zones. Here is the
method for getting the price for each package when shipping in Croatia.

public function croatia_shipping_value($package){
switch ($package) {

case 's':
return 15;
break;

case 'm':
return 20;
break;

default:
return 25;

break;

By receiving the package we are returning the price for each package size.

To calculate the shipping price for international shipping we will have to develop helper methods
that will be use to decouple our code into smaller parts and thus make it more maintainable and
readable.

The first helper method will be for getting the price by zones:

O N O O & W N~

NN NN NN NN B B 1 b 1 s s
N O O » WO NP O © 03O0 O b WO N O O

Custom Shipping Method 22

J Rk

* Returns the array with prices for a zone
* @param number $zone zone number

* @return array prices for packages

*/

public function get_zone_prices($zone) {

$zonePrice = array(
0 => array(

's' => 05,
'm' => 105,
'1' => 135),
1 => array(
's' => 220,
'm' => 250,
"1 = 275),
2 => array(
's' => 260,
'm' = 300,
1" => 360),
3 => array(
's' => 470,
'm' => 550,
"1' => 790),

);

return $zonePrice[$zone |;

In this method we are receiving a zone as a number. We have defined an array with prices for each
package for every zone. We are returning only one set of package prizes by using the zone number
as the index of the array.

So now we have the method to retrieve all package prizes for a particular zone. We also have all
countries with their zones assigned in the method shipping_countries().

That are actually two helper methods that can be combined to get the right prize for the country
and the package. Let’s now create our method to calculate the shipping price when shipping
internationally.

© 00 N O U b W N =

N N B 1 s sl s
, O O 00 9 0O O b W N~

Custom Shipping Method 23

Vot

Returns the prices for the provided country and package

*

*

@param string $country ISO country code

*

@param string $package

* @return number Price for the package and country

*/

public function international_shipping_value($country, $package){
$countries = woodev_shipping_countries();

if(! isset($countries|[$country])) {
return false;

$countryZone = (int) $countries[$country J;
$packagesFromZone = $this->get_zone_prices($countryZone);
$price = $packagesFromZone[strtolower($package)];

return $price;

In this method we will pass two parameters: country code and package size. We will get all the
countries from our method shipping_countries() and check if the passed country code is in that
array of countries.

Afterwards, if the country is supported by our shipping method, we will get the zone that is assigned
to that country by passing the country code to the array of countries. Since the country code is the
key in the array and the zone is the value array, we will receive the value and that is the zone we
require.

Once that is done, we are getting all the package prices for that specific zone using the method
get_zone_prices. Once our prices with package sizes are returned for the passed zone, we are getting
the specific prize for the package size we have passed to this method. The last thing to do is to return
the price.

At this point we have our method to calculate the cost of the shipping for any country to which
TISAK ships. We have our method to get the right package by dimensions and weight. We now
need to combine all of those methods in the method calculate_shipping which WooCommerce
uses to get the cost of that shipping.

Calculating the Shipping Cost

The first step is to define some variables which will be used to calculate the shipping cost.

© 00 N O U b W N =

NN NN B P 1 | sl
W NP O O© 0010 O i WON -~

Custom Shipping Method 24

Vot

calculate_shipping function.

@access public
@param mixed $package

% % ¥ x *x

@return void
*/
public function calculate_shipping($package) {

$cost = 0;

$weight = 0;

$currency = get_woocommerce_currency();
$maximumLength = 0;

$maximumHeight = 0;

$maximumWidth = 0;

if($currency != 'HRK'){
return false;

$dimensions = 0;

Variable $weight will be used to contain the total weight of the package.

We are getting the currency used in WooCommerce by using the function get woocommerce_cur-
rency(). I am here checking if the currency is Croatian Kuna and I return false it is not. So if
WooCoommerce uses another currency this shipping will never be displayed as available at the
checkout page.

This does not have to be in your case. Or even in this case. Since all the prices here are calculated
and set as they would be in Croatian Kuna, we could have a flag that is true if the currency is not
Croatian Kuna. We will then use a conversion function or API to convert the total shipping cost
into your currency.

If you are following this article by copying the code, I suggest you to not use that part where
I return false if it is not HRK. Or you can set your WooCommerce currency to HRK to see the
shipping method.

In this method a parameter $package is passed. This parameter holds all the items we have in our
cart and all our shipping definitions on the checkout page. We need to see the dimensions of all
those items in the package and calculate the dimensions.

© 00 N O U b W N =

NN N N N F S S b sy s
B WON P, O © 0010 O i O N O

Custom Shipping Method 25

foreach ($package['contents'] as $item_id => $values)
{
$_product = $values['data'];
$weight = $weight + $_product->get_weight() * $values|['quantity'];
$width = floatval(wc_get_dimension($_product->get_width(), 'em'));
if($maximumwWidth < $width) {
$maximumwWidth = $width;

$height = floatval(wc_get_dimension($_product->get_height(), 'cm'));
if($maximumHeight < $height) {
$maximumHeight = $height;

$length = floatval(wc_get_dimension($_product->get_length(), 'em'));
if($maximumLength < $length) {
$maximumLength = $length;

$dimensions = $dimensions + (($length * $values|'quantity']) * $width * $heig\
ht);
}

On the first line are getting the value the product object for each item. Then we are calculating the
weight which we add to the total weight in our variable $weight.

After that we are getting the width of this product and we are converting it in the unit cm since all
our methods and definitions are using cm for dimensions.

We are also assigning that width to the $maximumWidth if that width is greater then the current
maximum width.

The same logic is used for both height and length. The last part of the foreach loop is calculating the
dimensions. Dimension is calculated in Length * Height * Width. Since we also can have more than
one of those items, we have to use the parameter quantity also.

When the dimension for that item is calculated we are adding it up to the total dimensions which
is our variable $dimensions.

We have our total weight and our total dimensions. Let’s see if we can ship our package with TISAK:

© 00 N O U b W N =

S G
D W N~

©O© 00 N O U b W N =

(LGS
O & 0o N -~ O

Custom Shipping Method 26

$weight = we_get_weight($weight, 'kg');

if($weight > 10){
return false;

}

$tisak_package = $this->getTisakPackage($dimensions, $maximumLength, $maximumwi\
dth, $maximumHeight);

if($tisak_package == false) {
return false;

Since our maximum weight which can be shipped is 10 kg we have to set the weight to kg unit.
Once that is done we check if the weight is under 10kg. If not, we return false and this shipping
method is not displayed.

We are also getting the package by passing the total dimensions variable, maximum length, width
and height. If we do not receive a package value but we receive false. Then it means that the
dimensions we have passed are exceeding all the packages.

Let’s now define how to calculate the cost if everything until that point went well:

if($package['destination']['country'] == 'HR') {

$cost = $this->croatia_shipping_value($tisak_package);

telse{

$cost = $this->international_shipping_value($package['destination']['co\
untry'], $tisak_package);
}

if($cost == false) {
return false;

We check the destination for that package. If the country code is HR then it means that this package
will be shipped inside Croatia. If that is the case, we are using our method croatia_shipping_value
to get the cost.

© 00 = O U b W N =

[EGEY
= o

O© 00 9 O U b W N =

[N
(]

Custom Shipping Method 27

If the package is going to be shipped internationally, then we will use our other method interna-
tional_shipping_value.

Once that is done and if the variable $cost is false, then we return false and the shipping method
will not be displayed.

The last part of this method is to add the rate:

$rate = array(
'id' => $this->id,
"label' => $this->title,
'cost' => $cost,
//'calc_tax' => 'per_item'

);

// Register the rate
$this->add_rate($rate);
}

Adding our Shipping Class to all other Shipping
Methods

To add the shipping method to other shipping method (register it), we need to use the filter
woocommerce_shipping methods. That filters passes an array of all registered Shipping method.

By adding our shipping id as a key inside that array while the value is the name of our Shipping
class, we will register it.

/**
* Adding our Shipping class to methods
* @param array $methods
* @return array
*/
function woodev_add_shipping_methods($methods) {
$methods['woodev_tisak_shipping'] = 'WOODEV_TISAK_Shipping';
return $methods;

}

add_filter('woocommerce_shipping_methods', 'woodev_add_shipping_methods');

That’s it! You now have a shipping method that you can use in your own WooCommerce project.
Let’s learn how to add or remove shipping zones programmatically.

© 00 = O U b W N =

0 N O O b W N =~

S G N
O O b W N~ OO O

Custom Shipping Method 28

On Activation

In this chapter we will code what happens when our plugin is activated. Let’s first create the base.
We will hook our own function to the activation process of our plugin and we will check if there is
WooCommerce and if WooCommerce is of 2.6 or above:

register_activation_hook(__FILE_ , 'woodev_shipping_activation');
function woodev_shipping_activation(){
if(class_exists('WooCommerce')){
$wc_version = WC()->version;
if(version_compare($wc_version, '2.6', '>')){

// Here will our code be

First, we will get all the existing zones. We will retrieve them with the new class Shipping_Zones.
We can then check if our zones are already there or not.

// Shipping Zone are available, add them

// Get existing ones

$available_zones = WC_Shipping_Zones: :get_zones();
// Get all shipping countries from our shipping
$shipping_countries = woodev_shipping_countries();

// Get all WC Countries
$all_countries = WC()->countries->get_countries();
//Array to store available names
$available_zones_names = array();
// Add each existing zone name into our array
foreach ($available_zones as $zone) {
if(lin_array($zone['zone_name'], $available_zones_names)) {
$available_zones_names[] = $zone['zone_name'];

We have prepared some variables that we will use later. Those are all_countries and shipping_-
countries. The variable available_zones_names will hold only the names of all zones. We will
check againts that variable if our zones are already in the database.

Zone: TISAK Croatia

o I O O P W N =

[G
O » W N =~ O ©

Custom Shipping Method 29

// Check if our zone 'TISAK Croatia' is already there
if(! in_array('TISAK Croatia', $available_zones_names)){

// Instantiate a new shipping zone
$new_zone_cro = new WC_Shipping_Zone();
$new_zone_cro->set_zone_name('TISAK Croatia');

// Add Croatia as location
$new_zone_cro->add_location('HR', 'country');

// Save the zone, if non existent it will create a new zone
$new_zone_cro->save();

// Add our shipping method to that zone
$new_zone_cro->add_shipping_method('woodev_tisak_shipping');

So, we now check if there is a zone named TISAK Croatia. If not, we are instantiating a new object
of WC_Shipping_Zone. Once that is done, we are setting a zone name to the object. We are also
adding a new location to it by the country code and by the type of location which is country.

Then we save the zone. The zone is then created and saved to database with all those settings. After
that, we just add our shipping method to that zone.

We will go through all of it for each of the other international zones. The only difference will be
when adding locations.

Zone: TISAK Zone 0

if(! in_array('TISAK Zone @', $available_zones_names)){

$new_zone = new WC_Shipping_Zone();
$new_zone->set_zone_name('TISAK Zone @');
// for each countries of TISAK, if the country is in the specific zone, add it.
foreach ($shipping_countries as $code => $zone) {
// If the country is not zone 0, escape it
if($zone '= 0){
continue;
}
// 1f the country is not in WooCommerce countries, escape it
if(! isset($all_countries|[$code])) {
continue;

16
17
18
19
20
21
22

0 N O O b W N =~

SN =Y
<N O O WD =r OO O

Custom Shipping Method 30

// If not escaped, add it
$new_zone->add_location($code, 'country');

}

$new_zone->save();
$new_zone->add_shipping_method('woodev_tisak_shipping');

When adding new locations, we are going through all our shipping countries. We are checking the
current zone for which we want to add locations.

If the current country is not in that zone, we escape it. If the country is not in the WooCommerce
countries, then we are also escaping it. If the country is not escaped, then we add it.

Here is the code for the other three zones:

Zone: TISAK Zone 1

if(! in_array('TISAK Zone 1', $available_zones_names)){

$new_zone = new WC_Shipping_Zone();

$new_zone->set_zone_name('TISAK Zone 1°);

foreach ($shipping_countries as $code => $zone) {
if($zone != 1){

continue;

}

if(! isset($all_countries|[$code])) {
continue;

}

$new_zone->add_location($code, 'country');

}
$new_zone->save();
$new_zone->add_shipping_method('woodev_tisak_shipping');

Zone: TISAK Zone 2

Custom Shipping Method 31

if(! in_array('TISAK Zone 2', $available_zones_names)){

0 = O O b WO N =~

N =Y
<N O O WD, OO O

o I O O P W N =

B S s s
<N O O WO N~ OO O

$new_zone = new WC_Shipping_Zone();

$new_zone->set_zone_name('TISAK Zone 2°);

foreach ($shipping_countries as $code => $zone) {
if($zone != 2){

continue;

}

if(! isset($all_countries|[$code])) {
continue;

}

$new_zone->add_location($code, 'country');

}

$new_zone->save();
$new_zone->add_shipping_method('woodev_tisak_shipping'

Zone: TISAK Zone 3

if(! in_array('TISAK Zone 3', $available_zones_names)){

$new_zone = new WC_Shipping_Zone($zone);

$new_zone->set_zone_name('TISAK Zone 3’);

foreach ($shipping_countries as $code => $zone) {
if($zone != 3){

continue;

}

if(! isset($all_countries|[$code])) {
continue;

}

$new_zone->add_location($code, 'country');

}

$new_zone->save();
$new_zone->add_shipping_method('woodev_tisak_shipping'

);

On Deactivation

For the deactivation function, we will also go through all the existing zones and if any of those zones
is one from TISAK, then we will delete it.

O N O O & W N~

N N B 1 s sl s
, O O 0 O O b W N~ O O

Custom Shipping Method 32

function woodev_tisak_deactivate(){
if(class_exists('WooCommerce')){
$wc_version = WC()->version;
if(version_compare($wc_version, '2.6', '>')){
$available_zones = WC_Shipping_Zones: :get_zones();
$woodev_zones = array(
'TISAK Croatia',
'"TISAK Zone @',
'"TISAK Zone 1',
'"TISAK Zone 2',
'"TISAK Zone 3');
foreach ($available_zones as $zone) {
if(in_array($zone['zone_name'], $woodev_zones)) {
$the_zone = new WC_Shipping_Zone($zone['zone_id']);
$the_zone->delete();

}

register_deactivation_hook(__FILE_ , 'woodev_tisak_deactivate');

So, we are checking if the WooCommerce is of 2.6 or above. Then we are getting all the available
zones. Once we go through all of them, we check if one of those zones is from our TISAK method.
If it is, we instantiate the WC_Shipping Zone with it’s zone_id and delete it.

Custom Payment Gateway

WooCommerce has a bunch of free and premium plugins that add additional payment gateways.
Some of them are really complex and some of them are actually pretty simple.

We will create a card processing payment gateway.

Payment Gateway API

Let’s learn a bit more about creating custom payment gateways before we begin writing code. To
start our payment gateway we will extend our class from an abstract class WC_Payment_Gateway
that is located under woocommerce/includes/abstracts/abstract-wc-payment-gateway.php.

This class inhertis the same attributes and methods as the WC_Shipping Method since they both
are extended from the class WC_Settings APL

To learn more about the Payment Gateway API, you can visit https://docs.woothemes.com/document/payment-
gateway-api/?.

Here you can learn some of the main things you need to know.

Types

There are four different types of payment gateways:

« Form based: user is redirected upon clicking the submit button to another website for
processing payment (similar to PayPal Standard),

« iFrame based: the gateway seems to be loaded on the same page but it is actually an iframe
loading another website where user can pay

+ Direct: payment fields are shown directly on the checkout page and the payment is made
when user places the order

« Offline: no online payment, for example: cheque or bank transfer which has to be completed
manually.

We will create a mixed payment gateway where the main fields will be displayed as an iframe but
the payment will be initialized on our part by the API.

2https:// docs.woothemes.com/document/payment-gateway-api/

https://docs.woothemes.com/document/payment-gateway-api/
https://docs.woothemes.com/document/payment-gateway-api/
https://docs.woothemes.com/document/payment-gateway-api/

Custom Payment Gateway 34

Required methods and attributes

Some of the methods and attributes defined by WC_Settings_ API or WC_Payment_Gateway are
required and must be defined in every custom payment gateway. Some of them were already
described in the previous chapter Custom Shipping Method.

The required attributes are:

+ $id: Unique ID for the custom gateway

- $method_title: Title that will show in the admin area

« $title: Title that will be shown on the checkout page

+ $method_description: Used to describe our payment gateway in the admin area

« $availablity: Indicator if the payment gateway is available or not

« $enabled: indicator if this payment gateway is enabled or not

+ $supports: array that contains what the payment gateway supports. This will define if the
payment gateway will show. The basic values can be: products, refunds, default credit card_-
form.

Some recommended but not required attributes:

« $icon: URL to the icon/image of the payment gateway
 $has_fields: True if we want to show a form for processing a direct payment gateway

The required methods are:

« __construct: the constructor method will set the id and some other important attribues

« init_form_fields: used to define all the form fields for our payment gateway

« init_settings: get all the fields populated with values from the database

« process_payment: all the logic and functionality to process the payment of our payment
gateway

Braintree

Braintree offers a wide range of options for accepting payments in mobile apps or online on your
website. They even provide easy integrations with PayPal and Venmo so you can widen your
payments options by using only one company and API.

Since we are creating a card processing payment gateway we are interested only in payments options
that will accept credit cards. To learn which credit cards are available in Braintree you can visit this
address: https://www.braintreepayments.com/payment-methods/accept-credit-cards’.

To learn more about configuring them and integrating them you can visit this address: https://developers.braintreepa
cards/overview?_ga=1.130665295.1769098426.1465365969*.

3https:/ /www.braintreepayments.com/payment-methods/accept-credit-cards
4https:/ /developers.braintreepayments.com/guides/credit-cards/overview? _ga=1.130665295.1769098426.1465365969

https://www.braintreepayments.com/payment-methods/accept-credit-cards
https://developers.braintreepayments.com/guides/credit-cards/overview?_ga=1.130665295.1769098426.1465365969
https://developers.braintreepayments.com/guides/credit-cards/overview?_ga=1.130665295.1769098426.1465365969
https://www.braintreepayments.com/payment-methods/accept-credit-cards
https://developers.braintreepayments.com/guides/credit-cards/overview?_ga=1.130665295.1769098426.1465365969

Custom Payment Gateway 35

Testing Braintree

To test Braintree payment options on our local server and test environment you should sign up for
a sandbox account here: https://www.braintreepayments.com/sandbox”.

This is required to do because you will have to have a merchant id, public and secret keys for the
Braintree API to work.

Getting API Credentials

[will not go into further detail about getting the API credentials for Braintree because they
are well described here: https://articles.braintreepayments.com/control-panel/important-gateway-
credentials#api-credentials®.

For the busy ones:

1. Login into production/sandbox control panel on Braintree

2. Go to Account > My user

3. Under API Keys, Tokenization Keys, Encryption Keys, click View Authorizations and if
there are no API keys, create one by clicking Generate New API Key

4. Click View under the Private Key to see your public and private keys, merchant ID and
environment

PCI Compliance - be legit the easy way

PCI is a security standard for organizations that handle credit cards processing. Your store must
have some level of PCI Compliance to process credit cards of some brand (exp. Master Card, Visa).

This could be a hassle to implement on your own store, especially if you are looking for something
simple. So, to make it easy for store owners, other companies have implemented several ways for
being PCI compliant.

PayPal has a simple way of just redirecting users to their website to process payments. This way,
store owners do not have to worry about being PCI Compliant since PayPal does it all for them.

With Braintree there are two simple ways. They are not redirecting users but they are offering
two different ways into implementing their own fields as iframes on your website thus being PCI
compliant.

The first is Dropin which creates the whole form on your website. This does not leave us with
much customization options but it is the easiest way to have a card processing form that works like
a charm.

Shttps://www.braintreepayments.com/sandbox

6https:/ /articles.braintreepayments.com/control-panel/important- gateway- credentials#api- credentials

https://www.braintreepayments.com/sandbox
https://articles.braintreepayments.com/control-panel/important-gateway-credentials#api-credentials
https://articles.braintreepayments.com/control-panel/important-gateway-credentials#api-credentials
https://www.braintreepayments.com/sandbox
https://articles.braintreepayments.com/control-panel/important-gateway-credentials#api-credentials

© 00 N O U b W N =

(AN
Ll

Custom Payment Gateway 36

The second one is Hosted Fields which “hosts” our fields, each separately as an iframe and with
some simple JavaScript enables us to be PCI compilant and have a fully customizable form on our
side.

Both of them enable us to do the whole payment logic on our server side. We will go with the second
option Hosted Fields.

To learn more about them, you can visit this link: https://developers.braintreepayments.com/guides/hosted-

fields/overview/javascript/v2’.

Braintree PHP SDK

We need the Braintree SDK (Software Development Kit) to work with the Braintree API. Since we
are working with WordPress and WooCommerce which operate on PHP, we need the PHP SDK.

You can download it here: https://developers.braintreepayments.com/start/hello-server/php®. For
now, just download it so that we can later include it in our code.

Payment Class Base

Before we begin the code for our class we will create a plugin that will hold our code for the payment
gateway.

Go to the wp-content/plugins folder and create a new folder. I will name mine woodev_payment_-
gateway and also create a file with the same name under that folder woodev_payment_gateway.php.

Add this at the beginning of that file and customize it to your needs:

<?php

J*

Plugin Name: WooCommerce For Developers Payment Gateway
Plugin URI: https://leanpub.com/woodev

Description: A Custom Payment Gateway done in the "WooCommerce for Developers" e\
Book

Version: 1.0

Author: Igor BeniAt

Author URI: http://ibenic.com

textdomain: woodev_payment

*/

Let’s first define our constants that will be used when including files or enqueueing scripts or styles.
We will also create the base class in which we will define later on our methods and attributes for
this payment gateway.

7https:/ /developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v2
8https://developers.braintreepayments.com/start/hello—servelr/php

https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v2
https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v2
https://developers.braintreepayments.com/start/hello-server/php
https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v2
https://developers.braintreepayments.com/start/hello-server/php

© 00 N O U b W N =

O O b W N~

Custom Payment Gateway 37

define('WOODEV_PAYMENT_DIR', plugin_dir_path(_ FILE__));
define('WOODEV_PAYMENT _URI', plugin_dir_url(__FILE__));

add_action('plugins_loaded', 'woodev_payment_gateway');

function woodev_payment_gateway() ({
class WooDev_Braintree extends WC_Payment_Gateway {

}

Including Payment Method in WooCommerce

Before we begin with our payment gateway class, let’s add that to the woocommerce filter for
gateways so that WooCommerce can include it. Add this at the bottom:

function woodev_add_gateway_class($methods) {

$methods[] = 'WooDev_Braintree';
return $methods;
}
add_filter('woocommerce_payment_gateways', 'woodev_add_gateway_class');

Let’s define every script and style we need and also the includes folder that will hold our Braintree
PHP SDK before we define our class.

Assets

Create a folder assets inside our plugin’s folder. Inside that folder create two other folders css and
js.

« assets/
e CSS/
. js/

CSS

Create a new file braintree.css inside the folder css and add this inside that file which holds some
basic styles. Feel free to change it for you needs:

Custom Payment Gateway 38

1 .braintree-input {

2 display: block;

3 height: 33px;

4 width: 100%;

) padding: 3px Opx;

6 background-color: white;

7 color: #6606;

8 border: none;

9 border-radius: 5px;
10 margin-bottom: 12px;
11}
12
13 .braintree-input-small {
14 display: inline-block;
15 width: 30%;
16 vertical-align: middle;
17}
18 .woocommerce-checkout #payment #woodev_braintree-cc-form div.form-row {
19 padding: 3px;

20}

JavaScript

Create a new file braintree.js inside the folder js and add the following code inside that file. This is
only a wrapper that will hold our JavaScript later on.

(function($){
$(document) .ready(function(){

)
})(jQuery);

O = W N =

Includes

Now create a new folder inc inside our plugin’s folder. Under that folder create a new folder
braintree and paste the files from the Braintree SDK you have downloaded. The structure of the
braintree folder should be something like this:

« braintree/
o Braintree/
o ssl/

0 N O O & W N =

e
W N~ OO O

14
15
16
17
18
19
20

Custom Payment Gateway 39

» autoload.php
« Braintree.php

Now let’s just modify the autoload.php so that the autoload will load the PHP files from the right
directory. Open autoload.php and change:

$fileName = dirname(_DIR__) . '/lib/';

to
$fileName = dirname(_DIR__) . '/braintree/';

Now we are prepared for some real stuff! Let’s begin:)
Constructor Method

First, we will define some basic and requires attributes so that our payment gateway can be seen:

class WooDev_Braintree extends WC_Payment_Gateway {

J Rk

* Constructor for your shipping class

*

@access public

*

@return void

*/
public function __construct() {
$this->id = 'woodev_braintree';
$this->method_title = _ ('WooDev Braintree', 'woodev_payment');
$this->method_description = __('Braintree Payment Gateway made for WooDev\

eBook', 'woodev_payment');
$this->title

__('Braintree', 'woodev_payment');
} // End of Constructor
} // End of payment class

We have defined the ID of our payment gateway, the gateway titles and description. Nothing too
special.

We will now define two attributes required to show the fields of our payment method and also to
include it at the checkout of our products:

O = W N -

W N -

O© 00 9 O O b W N =

[G
o b= 0O N -~ O

Custom Payment Gateway 40

$this->has_fields = true;

$this->supports = array(
"products’,
'default_credit_card_form');

Now we will add the inherited methods from the WC_Settings API:

// Load the settings.

$this->init_form_fields();

$this->init_settings();

$this->enabled = $this->get_option('enabled');

The fields are now loaded and also the settings from the database. We are then assigning the option
enabled to define if our payment gateway is enabled or not.

The last part of our constructor method will have the required hooks for enqueueing scripts and
styles in the header, footer and also right under our credit card form (this could be also loaded in
footer if wanted). We will also define a hook that will be used to save our settings for this payment
gateway.

add_action('woocommerce_credit_card_form_end', array($this, 'add_braintree_sc\
ript'));

add_filter('woocommerce_credit_card_form_fields', array($this, 'braintree_fie\
lds'));

add_action('wp_enqueue_scripts', array($this, 'braintree_style'));

// Save settings
if (is_admin()) {

add_action('woocommerce_update_options_payment_gateways_ ' . $this->id, array(\
$this, 'process_admin_options'));

}
} // End of Constructor

All these methods will be defined as we progress in this chapter. Hooks are used for:

« woocommerce_credit_card_form_end: Add HTML or anything else at the end of the credit
card form

- woocommerce_credit_card form_fields: Filters the fields of the credit card form
« wp_enqueue_scripts: Enqueue the scripts and styles

0 N O O b W N =~

NN NN NN NN P B 1 | 1 s s
N O O b WO N O © 03O0 O b WO~ O O

Custom Payment Gateway

Settings Fields

41

Our contructor method calls the method init_form_fields() which is used to define the fields for this

payment gateway.

Our fields will be:

« enabled: check to enable or disable this payment gateway

» mode: select sandbox or production environment

« merchant_id: Braintree Merchant ID

+ public_key:

Braintree Public Key

. secret_key: Braintree Secret Key

Add this to our class:

public function

init_form_fields() {

$this->form_fields = array(

'enabled' => array(
'title' => __('Enable', 'woodev_payment'),
'type' => 'checkbox',
"label' => __('Enable WooDev Braintree', 'woodev_payment'
'default' => 'yes'
),
'mode' => array(
'title' => __('Mode', 'woodev_payment'),
'type' => 'select',
'default' => 'sandbox',
'options' => array(
'sandbox' => 'Sandbox',
'production' => 'Production (Live)')
),
'merchant_id' => array(
'title' => __('Merchant ID', 'woodev_payment'),
"type' => 'text',
'default' => "'
),
'public_key' => array(
'title' => __('Public Key', 'woodev_payment'),
"type' => 'text',
'default' => "'
),

'secret_key' => array(

)I

28
29
30
31
32
33

0 I O O b W N =

, O © 0 9 O O b W N~

RGN

Custom Payment Gateway 42

'title' => __('Secret Key', 'woodev_payment'),
'type' => 'password',
'default' => "'

Configuring Braintree

Since our fields are now defined we have define a method that will be used to start the Braintree
API with our mode, merchant id, public and secret key. Add this to our class:

private function load_braintree_config(){
require_once WOODEV_PAYMENT_DIR .'inc/braintree/Braintree.php’;

Braintree_Configuration: :environment($this->get_option('mode'));
Braintree_Configuration: :merchantId($this->get_option('merchant_id"));
Braintree_Configuration: :publicKey($this->get_option('public_key'));
Braintree_Configuration: :privateKey($this->get_option('secret_key'));

}

This will configure our Braintree so that we can use all methods from the APL

Enqueueing Style and Scripts

For our Braintree API to function correctly, we also need some JavaScript. We will enqueue the
scripts and also the style that will define how our hosted fields look:

public function braintree_style(){

if (! is_checkout() || ! $this->is_available()) {
return;
1
wp_enqueue_script('woodev-braintree-js', 'https://js.braintreegateway.com/js/b\

raintree-2.24.1.min.js', array(), '1.0', true);

wp_enqueue_style('woodev-braintree-style', WOODEV_PAYMENT_URI . '/assets/css/b\
raintree.css', array(), '1.0', 'screen');

wp_enqueue_script('woodev-braintree-custom-js', WOODEV_PAYMENT_URI . '/assets/\
js/braintree.js', array('jquery'), '1.0', true);

}

Before enqueueing, we are checking also if we are on the checkout page and if this payment gateway
is available.

0 N O O B~ W N -

NN NN DNDDNDDNDNDNDNEA B B 1 s s |l
W N O O k= O NP O O 0N O0O O b WO~ O O

Custom Payment Gateway 43

Credit Card Fields

Since Braintree Hosted Field are added as iframes, we will not use the classic form elements such
as input. We need to define those as regulars divs so that our iframe can be appended to them. Add
this to filter those fields:

public function braintree_fields($fields){

$fields['card-number-field'] = '<div class="form-row form-row-wide">
<label for="' . esc_attr($this->id) . '-card-number">' . __('Card Number',6 \
'woocommerce') ' *</label>
<div id=""' . esc_attr($this->id) . '-card-number" class="braintree-input"></\
div>
</div>"';
$fields['card-expiry-field'] = '<div class="form-row form-row-first">
<label for="' . esc_attr($this->id) . '-card-expiry">' . __('Expiry (MM/YY)\
', 'woocommerce') . ' *</label>
<div id="' . esc_attr($this->id) . '-card-expiry-month" class="braintree-inp\
ut braintree-input-small" ></div> / <div id="' . esc_attr($this->id) . '-card-\
expiry-year" class="braintree-input braintree-input-small"></div>
</div>';
$fields['card-cve-field'] = '<div class="form-row form-row-last">
<label for="' . esc_attr($this->id) . '-card-cve">' . __('Card Code', 'wooc\
ommerce') . ' *</label>
<div id=""' . esc_attr($this->id) . '-card-cvc" class="braintree-input braint\

ree-input-small"></div>
</div>';

return $fields;

If you look closely, our fields are actually divs with the IDs generated from this payment gateway:

#woodev_braintree-card-number

#woodev_braintree-card-expiry-month

#woodev_braintree-card-expiry-year
#woodev_braintree-card-cve

0 = O O b W N =~

NN NN NDNDNDNDDN A B 1 s s s
0 N O O b WO N~ O O 00 N0 O b W N~ ©

Custom Payment Gateway 44

All those divs have the classes we have defined in our braintree.css for display. These IDs will be
used in the script we will append at the end of the credit card form to include the hosted fields.

Credit Card Script

Braintree JavaScript will handle everything for us to be PCI compliant as we learned before. To learn
more about how to handle hosted fields with Braintree JavaScript, visit this link: https://developers.braintreepaymen
fields/setup-and-integration/javascript/v2’.

We hooked our method braintree_script to action woocommerce_credit_card_form_end. Let’s
add it:

public function add_braintree_script($id){
if($this->id == $id){
$this->1load_braintree_config();
$clientToken = Braintree_ClientToken: :generate();
7>
<script>
(function($){
$(document) .ready(function(){
var $formCheckout = $("form.checkout"),
$formCheckoutID = $formCheckout.attr("id");

if(| $formCheckoutID){

$formCheckout.attr("id", "checkout-form");

braintree.setup("<?php echo $clientToken; 7>", "custom", {
id: "checkout-form",
hostedFields: ({

styles: {

// Styling element state

":focus": {

"color": "blue"
},
".valid": {

"color": "green"
3,

9https:/ /developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v2

https://developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v2
https://developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v2
https://developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v2

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
92
953
54

Custom Payment Gateway 45

".invalid": {

"color": "red"
}
},
number : {
selector: "#<?php echo $this->id; ?>-card-number"
1,
cvv: {

selector: "#<?php echo $this->id; ?>-card-cvc"

}/

expirationMonth: {

selector: "#<?php echo $this->id; ?>-card-expiry-r

},

expirationYear: {

selector: "#<?php echo $this->id; ?>-card-expiry-

});
1);
})(jQuery);

</script>
<?php

}

Here we load our Braintree configuration and create a client token that is needed for our JavaScript
to work.

Since our checkout form does not have an ID attribute which is needed for our hosted fields to
work, we are creating a custom ID attribute and add it to the checkout form. We have named it
checkout-form.

In setting our Braintree using the function setup we pass our client token, parameter ‘custom’ to
define that we work with hosted fields and our options object.

Object with options contains selector for each part of our credit form, the id of our form and also
some styles that will show if the card is correct or invalid.

Customizing WooCommerce Form Submittion

Since Braintree JavaScript hijacks the form submittion because it has to process all those hosted
fields and create a hashed string that will be appended to the form on which we called our Braintree

O© 00 9 O O b W N =~

O© 00 9 O O b W N =

S s e
W N =~

Custom Payment Gateway 46

in the script before.

Since WooCommerce uses WC_AJAX to submit the form by default, that hashed string is not sent
and we need to stop the AJAX from performing.

We will have to use the default form submittion. Due to the fact that our Braintree hijacks the form
submittion, the element of type submit is ignored. That element has the name woocommerce_-
checkout_place_order.

This one has to be added as a hidden input field so that WooCommerce can trigger the checkout
payment process if our payment gateway is selected.

Open our braintree.js that we have made before and add this new JavaScript inside our wrapper:

var $form = $("form.checkout");

$form.append("<input type='hidden' name='woocommerce_checkout_place_order' value\
="' /")
$form.on('checkout_place_order_woodev_braintree', function()({

return false;

});

This will append the hidden input to the form and also disable the AJAX process with the trigger
checkout_place_order_woodev_braintree returning false.

Process Payment

Now we have customized our form submittion and added every script, style and functionality that
we need. The last part is the method to process payment in our class. Let’s start:

public function process_payment($order_id) {

global $woocommerce;
$order = new WC_Order($order_id);

$this->load_braintree_config();
$payment_method_nonce = $_POST['payment_method_nonce'];
$customerArray = array();

© 00 N O U b W N =

B R s s
O O b W N~ O

o I O O P+ W N =

Custom Payment Gateway 47

We are getting the order from the $order_id and load the braintree configuration. After that, we
are getting the hashed string we have talked about which is appended to the form with the name
payment_method_nonce.

We also start the customer array which will hold the customer information, if any. We will populate
the customer array like this:

if(isset($_POST['billing_first_name']) && $_POST['billing_first_name'] != '' \

Al
$customerArray[' firstName'] = $_POST["billing_first_name"];

}

if(isset($_POST['billing_last_name']) && $_POST['billing_last_name'] != "'){
$customerArray['lastName'] = $_POST["billing_last_name"];

}

if(isset($_POST['billing_phone']) & & $_POST['billing_phone'] != "'){
$customerArray|['phone'] = $_POST["billing_phone"];

}

if(isset($_POST['billing_email']) & & $_POST['billing_email'] != "'){
$customerArray['email'] = $_POST["billing_email"];

}

Now that we have our hashed input and the customer information, we can create a sale using
Braintree API:

$result = Braintree_Transaction::sale(]
"amount' => $order->order_total,
'customer' => $customerArray,
'paymentMethodNonce' => $payment_method_nonce,
'options' => |
'submitForSettlement' => True
]
1)

We have defined the option submitForSettlement as true so that our credit card is being processed
automatically. Now we need to check if the transaction was succesfull to complete the payment,
empty the cart and return the array with the URL address of the order.

We will also add a notice if for some reason, the transaction did happen but was declined. The last
thing is to add some WooCommerce notices if there is any error while processing the payment. This
is all done like this:

O N O O & W N~

N NN DNDDNDDNDDNDDNDDNDDNR-S A~ B B v sy vy
© 0 39 O O & W N~ O 03O0 0 b+ N~ O

Custom Payment Gateway

if($result->success){

// Payment complete

48

$order->payment_complete($result->transaction->id);

// Add order note

$order->add_order_note(sprintf(__('%s payment approved! Trnsaction ID: %s', \

'woocommerce'), $this->title, $result->transaction->id));

// Remove cart
$woocommerce->cart->empty_cart();

// Return thankyou redirect
return array(

'result' => 'success',

'redirect' => $this->get_return_url($order)

);

} elseif($result->transaction) {

// Transaction was made but declined or failed

$order->update_status('failed', sprintf(_ (

'%s payment declined! Trnsaction I\

D: %s', 'woocommerce'), $this->title, $result->transaction->id));
} else {
foreach($result->errors->deepAll() AS $error) {
wc_add_notice($error->message . '(' . $error->code . ')', 'error');

}

return array(
'result' => 'failure',

'redirect' =>

);

Congratulations! You have created a custom payment method!

Printing Order Details from the
Admin area

Order details could be something that you would want to print in a custom solution. So, how to do
it?

We will add a button to the “Actions” column in the order list. This button will then open a new
window and automatically print the content of that window.

This new window will have the order details. The order details that we will print will be displayed
through an action hook that WooCommerce uses in the Account page when viewing an order.

You can add this code in a theme also, but I would suggest that you add it to the a custom plugin.

Adding the Print Button

We will add a simple print button with an icon using the Dashicons. First, we need to hook to an
action that is used for adding other buttons or HTML elements to it.

<?php

add_action('woocommerce_admin_order_actions_end', 'woodev_print_button');
We have hooked a function woodev_print_button. Let’s define it:

<7php

function woodev_print_button($order) {
$post_id = $order->get_id();
echo '<a class="button dashicons dashicons-analytics order-print"

data-order=""' . $post_id .
href=""' . admin_url('post.php?post="' . $post_id . '&action=edit'

Printing Order Details from the Admin area 50

In this button we have added some new classes. Since WordPress is using Dashicons, we have applied
the classes to show a Dashicon icon. Another class here is print-order. We will use that class to style
our button so it looks good.

You should see this now:

Screen Options ¥ Help v
Orders Add order

Search Orders

All (5) | Processing (3) | Completed (1) | Cancelled (1)
Bulk Actions ¥ Apply All dates : v Filter 5 items
(-] Order Purchased Ship to (] Date Total Actions
€© #1984 by Admin 4 items 2016/08/04 Kn95.00 o| @
(v] #1985 by Admin 4items 2016/08/04 $80.00 o| @

Print Button

The attribute data-order will have the order ID so that we can access the ID value with JavaScript.

We will use JavaScript to get the Order details once we click on the print button.

Adding the Style and the JavaScript

The style that we will have to add is a simple one that will just make some small adjustments to the
button. JavaScript, on the other hand, will be an AJAX call to WordPress that will get the HTML to
print.

We will add them both in the footer. The action hook for the footer is:

<?php

add_action('admin_footer', 'woodev_print_footer');

Now we will also define that function:

Printing Order Details from the Admin area 51

<?php

function woodev_print_footer(){
2>
<style>
.button.order-print {
width:2em;
height:2em !important;
position: relative;

.button.order-print:before {
position: absolute;
left: ©;
right:0;
top:Q;
bottom:0Q;
margin:auto;

}

</style>
<script>

jQuery(document) .ready(function($){

$(".order-print").on('click', function(e){
e.preventDefault();
var $orderID = $(this).attr("data-order");

$.ajax({
'url': ajaxurl,
data: { action: 'woodev_print_order', order: $orderiID },
dataType: 'html',
success: function(resp){
// Create a pop-up
var popupWIndow = window.open('',"'"', 'width=400, he:
// Add HTML
popupWIndow.document .write(resp);
// Print
popupWIndow.window.print();
// Close the pop-up
popupWIndow.window.close();

Printing Order Details from the Admin area 52

});
});

1);

</script>
<?php
}

The first CSS properties are to define the display of our button. The JavaScript is a bit more complex.

We are here attaching a click event to the button using the class order-print. On each click, we are
preventing the browser from going on the URL defined in the attribute href (if any). Then we are
getting the Order ID from the attribute data-order.

After that, we are creating an AJAX request. We are sending the AJAX request to the URL specified
in the parameter url. The variable ajaxurl holds the URL to the file that is used to perform AJAX
request. This file is located in wp-admin/ajax-admin.php.

WordPress itself creates that global variable on the top of the head element inside the admin area.

The data that are sending with the AJAX request are the action and the order. The action is used
so that we can hook a function to it that will return the HTML. The order parameter will contain
the Order ID.

We are also specifying that we request an HTML response. Once we get the response, we are creating
a pop-up window and add that HTML to the pop-up. After that we are printing the content of that
pop-up and then close the window.

Now we only have to create the HTML and return it.

Creating the HTML for AJAX Response

This is the last step in this chapter. In order to have the Order details displayed in the same way
we would have them displayed in the Account page, we will have to use the same action hook that
WooCommerce uses to display the details.

This action is woocommerce_view_order. When we pass a parameter action to the admin-ajax.php
file, we will create a dynamic action hook that will contain also the value of our parameter. We need
to hook a function to that action hook and we will do it like this:

<?php
add_action('wp_ajax_woodev_print_order', 'woodev_print_order_ajax');

We have used only the action that is created if the user is logged in. If the user is not logged in, we
would had to use the action:

Printing Order Details from the Admin area 53

wp_ajax_nopriv_YOURACTION

Since we are in the admin area, we don’t need that. So, now we hooked a function to the action
hook. Let’s define it:

<?7php

function woodev_print_order_ajax(){
$order = $_GET['order'];

// Remove the Order Again Button

remove_action('woocommerce_order_details_after_order_table', 'woocommerce_orde\
r_again_button');

// Remove Link from Product

add_filter('woocommerce_order_item_permalink', 'woodev_remove_permalink_from_pr\
oduct', 99);

2>

<style type="text/css">

*{
margin:0Q;
padding:0;
box-sizing: border-box;
}
h1 {
font-size: 2em;
margin-bottom:2cm;
}
h2 {
font-size: 1.5em
}
body {
margin: 1cm 2cm;
}
table {

width: 100%;

table-layout: fixed;
border-collapse: collapse;
margin-bottom:1cm;

Printing Order Details from the Admin area

tfoot {
text-align: right;

}

th,td {
padding:5pt;
border-bottom:1px solid;

.product-name {
text-align: left;

.product-total ({
text-align: right;
width: 150px;

.shop_table.customer_details {
text-align: left;

.shop_table.customer_details th {
width: 150px;

.col2-set:after {
display: table;
clear: both;

.col2-set .col-2,
.col2-set .col-1{
float:left;
width: 50%;
}
</style>
<h1>Order #<7php echo $order; 7></h1>
<?php
do_action('woocommerce_view_order', $order);

54

Printing Order Details from the Admin area 55

wp_die();

function woodev_remove_permalink_from_product($permalink) {

T,
7

return

The first thing we do here is getting out Order ID. We are also removing a function that is hooked
on another action woocommerce_order_details_after order_ table. This action is called inside the
file that shows the order details. That is in our main action woocommerce view_order.

We are removing the button to link again from our print since it is not usable. After that we are also
adding a filter that will remove the link from our product title. This is also not neccessary in a print
file. We could make make a CSS property that would display the link after the Product title. I will
leave that decision to you.

Once we have done all that, we are adding some simple CSS for printing purposes. You can easily
add your own styles here.

The next thing is to display the main title of our document. After that, we are calling the action
woocommerce_view_order and passing the Order ID we got earlier.

Function wp_die() is used to make sure other code does not get executed after that.
Congrats! You now have the ability to print the order details!

You could make a WooCommerce object from the ID using WC_Order class and make a custom HTML
for your order details, but that is up to you.

Managing Stock with 3rd Party
Service

If you are looking for various WooCommerce projects, one of the frequent ones will be managing
their stock levels for products.

Some of those projects will require you to connect with a 3rd party service to handle stock levels.
This may be a company that actually holds the physical products and manages the stock levels. This
company has an API that provides you with enough information about the products.

This chapter will be a small representation on how to do it. Since there are different services with
different APIs, I will show you how to do it on the WooCommerce level.

To have everything fully working, you will need to implement the API calls. Let’s first create our
simple plugin “WooDev Stock Manager”.

Create a folder woodev_stock and add a file in there with the same name woodev_stock.php.
After that create another folder inc inside and create two new files in there: functions-api.php and
functions-we.php.

The file functions-api.php will contain functions that will be used to interact with our Service/APL
The second file, functions-we.php will contain all functions related to WooCommerce.

Now that we are done, add this to the file woodev_stock.php.

<?php

J*

Plugin Name: WooDev Stock Manager
Plugin URI: https://leanpub.com/woodev
Description: An abstract plugin that can be used as a starting point to manage s\
tock

Version: 1.0

Author: Igor Benié

Author URI: http://ibenic.com
textdomain: woodev_stock

*/

if(| defined('ABSPATH')) {

return;

Managing Stock with 3rd Party Service 57

if(! class_exists('WooCommerce')) {
return;

define('WOODEV_STOCK_DIR', plugin_dir_path(__FILE__));
define('WOODEV_STOCK_URI', plugin_dir_url(_FILE__));

After you have added it, go to WordPress Admin dashboard under Plugins and activate it.

Starting our Stock Manager

We will have a final class that can’t be extended any further. In this class we will include the needed
files and also hook our functions.

Add this to the file woodev_stock.php:

final class WooDev_Stock {

xRk
* We will include files and add hooks when WooCommerce Loads
*/
public function __construct() {
$this->includes();
$this->hooks();

Veis
* Including files
* @return void
*/
public function includes() {
require_once WOODEV_STOCK_DIR . "inc/functions-api.php';
require_once WOODEV_STOCK_DIR . "inc/functions-wc.php';

kK
* Adding Hooks
* @return void
*/
public function hooks() {
// We will have the hooks defined here

Managing Stock with 3rd Party Service 58

add_action('woocommerce_init', 'woodev_stock_load');

Rk
* Load the Stock Manager after WooCommerce has been loaded
* @return void
*/

function woodev_stock_load() {

new WooDev_Stock();

By using the action woocommerce_init, we are making sure that the WooCommerce plugin is
active and initiated. In the hooked function, we are initializing our class WooDev_Stock.

Creating the Product Inventory Field

To get the stock level of one of our products, we need an identifier of the product from the service.
This Service ID will be used when requesting the stock level for that product.

We need a field for that. This Service ID field will be rendered in the Inventory tab when editing a
product. Let’s add a hook that will render this field.

Veis
* Adding Hooks
* @return void
*/

public function hooks() {

// Creating the product field
add_action('woocommerce_product_options_stock_fields', 'woodev_stock_product_s\
ervice_field');

This action hook woocommerce_product_options_stock_fields is used to display fields that are only
available when the Manage Stock field is checked.

Let’s define the function woodev_stock_product_service_field inside the file functions-we.php:

Managing Stock with 3rd Party Service 59

<7php

Vet
* Hooked Functions for WooCommerce

*/

if(| defined('ABSPATH')) {

return;

JHk

* Service Field for the product

* @return void

*/

function woodev_stock_product_service_field() {

$description = sanitize_text_field('The Service Product ID used to sync the st\
ock level with the Service');
$placeholder = sanitize_text_field('Enter the Service ID');

$args = array(

'id' => '_service_product_id"',

'label’ => sanitize_text_field('Service ID'),
'placeholder’ => $placeholder,

'desc_tip' => true,

'"description' => $description,

)

woocommerce_wp_text_input($args);

The key that we are using is _service_product_id. This will be also used as a meta key.

Managing Stock with 3rd Party Service 60

#& General SKU o
€ Inventory

Manage stock? v'| Enable stock management at product level
M Shippin

. Stock gquantity 0 2]

& Linked Products

Allow backorders? Do not allow + 9
Attributes

Service ID Enter the Service ID 2]
Advanced

Stock status In stock 1 9

Service ID field

Saving the Field

We still can’t save the data provided inside that field. Let’s enable that by adding this first inside the
tile woodev_stock.php:

JHk
* Adding Hooks
* @return void
*/

public function hooks() {

// Creating the product field
add_action('woocommerce_product_options_stock_fields', 'woodev_stock_product_s\
ervice_field');

// Saving the product field
add_action('woocommerce_process_product_meta', 'woodev_stock_product_service_f\
ield_save');

This action hook woocommerce_process_product_meta is a global action hook that will trigger
everytime a product gets published or updated. Open the file functions-we.php and add this new
function:

Managing Stock with 3rd Party Service 61

kK
* Saving the Product Service ID
* @param integer $post_id
* @return void
*/
function woodev_stock_product_service_field_save($post_id) {

if (! (isset($_POST['woocommerce_meta_nonce'], $_POST['_service_product_\
id" 1) |l wp_verify_nonce(sanitize_key($_POST['woocommerce_meta_nonce']), 'w\
oocommerce_save_data'))) {
return false;

$service_product_id = sanitize_text_field(
wp_unslash($_POST['_service_product_id'])

)

update_post_meta(
$post_id,

_service_product_id"',
esc_attr($service_product_id)

);

On each call, we are checking the WooCommerce nonce. If that is verified, then we are sanitizing
the field and saving the Service ID in the meta key _service\product_id.

Checking the Stock Level

The Service ID field is now fully functional on the admin part. We still need to check the stock level
with that ID. First, let’s hook in the filter that returns the stock amount inside WooCommerce.

Veis
* Adding Hooks
* @return void
*/

public function hooks() {

// Creating the product field
add_action('woocommerce_product_options_stock_fields', 'woodev_stock_product_s\

ervice_field');

Managing Stock with 3rd Party Service 62

// Saving the product field
add_action('woocommerce_process_product_meta', 'woodev_stock_product_service_f\
ield_save');

// Filtering the Stock Quantity
add_filter('woocommerce_get_stock_quantity', 'woodev_stock_get_stock_quantity'\
, 10, 2);

The filter woocommerce_get_stock_quantity is called in several parts of WooCommerce. It will be
checked when the product is updated or published, when the product is added to the cart, on the
checkout etc.

Filtering the Stock Level

Let’s now define the function woodev_stock_get_stock_quantity inside the file functions-wc.php:

Veis
* Item has been added to cart, check the stock level
* @return void
*/

function woodev_stock_get_stock_quantity($amount, $product) {

$stock_amount = woodev_stock_get_level_for_product($product->id);

if(is_wp_error($stock_amount)) {
// API returned an Error, what do to? You can return the current amount or ret)\
urn @ to be sure
// I will return © because I don't want to sell something that I can't ship
return O;

if(false === $stock_amount) {
// The product is not a service product
return $amount;

// Perform Other checks if needed

$amount = $stock_amount;

Managing Stock with 3rd Party Service 63
return $amount;

We are getting the stock level by the function woodev_stock_get _level for_product. This function
will use the Service API to get the stock level. It will return:

« WP_Error, if the request failed for a reason,
« false, if the product does not have the Service ID (not connected to Service)
« integer, if the request was made without any issues and returns the stock level

If he product does not have the Service ID, we will return the current stock amount. If there is a
WP_Error, we will return 0 as stock level, because we want to be sure we have the product. With
an error, we can’t be sure of it.

Now we just need to define the function woodev_stock_get_level_for_product and others to connect
with our Service/API.

Getting the Stock Level from Service

To handle the stock level from a service, we need to have a few functions for performing the API
call, get he product ID from the Service etc.

Ak
* Get the Stock level for the product ID
* @param integer $product_id
* @return mixed It will return the stock amount, WP Error on reques\
t error or false if the product is not connected to service
*/

function woodev_stock_get_level_for_product($product_id) {
$product_api_id = woodev_stock_get_product_api_id($product_id);

// This product is not handled by our service
if(! $product_api_id) {
return false;

$args = array(
"body' => array(
"product_id' => $product_api_id

Managing Stock with 3rd Party Service 64

));

$stock_response = woodev_stock_perform_request('stock', $args);
$stock_level = 0;

if(is_wp_error($stock_response)) {
return $stock_response;
}
// If the response will be retrieved
if(isset($stock_response['response']) && $stock_response['response']['code’']\
1= 200) {
return new WP_Error('api_error', $stock_response|['response']['message']);

$stock_response_body = wp_remote_retrieve_body($stock_response);

// I am assuming this will return only the Stock Number.
if(is_integer($stock_response_body)) {
$stock_level = $stock_response_body;

ok
* If the API returns an XML response, JSON or something else,
* you will need to parse the response and get the stock level
*/
return apply_filters('woodev_stock_get_level_for_product', $stock_level, $prod\
uct_id);
}

First, we get the Service Product ID. If there is no ID, we will return false. That is why we are
returning the current stock amount in the function woodev_stock_get_stock_quantity before.

If there is a Service Product ID, the function woodev_stock_perform_request will perform the API
request. We will return the WP_Error if the response if an error or if the response code is not 200.

The function wp_remote_retrieve_body will return the body of the response and if it’s an integer we
will assing the value to the variable $stock_level.

The returned value from our function can be also filtered out to include other checks. You can also
extend this function by performing other checks.

The product will become out of stock if the returned value is 0. You can try it by defining this
function to return 0 and see what happens.

Let’s now define our other two functions that are called here.

Managing Stock with 3rd Party Service 65

Getting the Service Product ID

We have already mentioned the function woodev_stock_get_product_api_id inside the code above.

Rk
* Returns the Product ID stored in API/Service
* @param integer $product_id
* @return mixed
*/
function woodev_stock_get_product_api_id($product_id) {
return get_post_meta($product_id, '_service_product_id', true);

Performing the API request

The function woodev_stock_perform_request will be able to handle several requests. I will leave that
to you to define. In the code example you will see how you can define it for getting the Stock Level.

J*k
* Performing the Remote Get
* @return WP_HTTP
*/

function woodev_stock_perform_request($service, $args = array()) {
$url = "'

// Build the header if needed
$args|'header'] = array(

'SERVICE_HEADER_API_KEY' => 'SERVICE_HEADER_API_KEY_VALUE'
);

switch ($service) {
case 'stock':
$url = 'https://api.yoursite.com/path/for/stock";
break;

default:

code. ..

break;

if(! $url) {

Managing Stock with 3rd Party Service 66

return new WP_Error('api_error', _ ('There is no URL provided to perform a r\
equest'));

return wp_remote_get($url, $args);

For some APIs, you will also need to handle POST requests, but as we are only getting the stock
level here I have implemented only the function wp_remote_get.

Courses

This chapter is a link to all the courses I have made for this eBook. The courses are hosted on a
separate platform where Ia€™Il create many other courses.

Since the videos had to be encoded, edited and some other work has to be done, I am offering this
course at $35.

Because you have bought this eBook, I am offering you a coupon that will lower the price of the
courses by $10.

For now, these is the list of courses for this eBook with coupon codes applied to the link:

« Custom WooCommerce Shipping Method™

10http:/ /practicalwp.teachable.com/p/create-a-custom-shipping-method-in-woocommerce/?product_id=261080&coupon_code=REDUCE10

http://practicalwp.teachable.com/p/create-a-custom-shipping-method-in-woocommerce/?product_id=261080&coupon_code=REDUCE10
http://practicalwp.teachable.com/p/create-a-custom-shipping-method-in-woocommerce/?product_id=261080&coupon_code=REDUCE10

Changelog
28.05.2018

+ Refactored the code and rewritten the text in Shipping Method chapters. Removed old code.
Product attributes are now retrieved with methods rather than direct access.

« Made a decision to write only up to date code with WC 3.x.
11.04.2017

« Refactored code in “WooCommerce 2.6 new Shipping features” > “On Activation”
« Refactored code in “Printing Order Details from the Admin area” > “Adding the Print Button”

	Table of Contents
	About the Book
	How to read and use the code
	WooCommerce 3.x

	The WooDev Project
	Requirements

	Custom Shipping Method
	Shipping API
	Defining the Shipping Method
	Shipping Class
	Adding our Shipping Class to all other Shipping Methods
	On Activation
	On Deactivation

	Custom Payment Gateway
	Payment Gateway API
	Braintree
	PCI Compliance - be legit the easy way
	Braintree PHP SDK
	Payment Class Base
	Including Payment Method in WooCommerce
	Assets
	Includes
	Constructor Method
	Settings Fields
	Configuring Braintree
	Enqueueing Style and Scripts
	Credit Card Fields
	Credit Card Script
	Customizing WooCommerce Form Submittion
	Process Payment

	Printing Order Details from the Admin area
	Adding the Print Button
	Adding the Style and the JavaScript
	Creating the HTML for AJAX Response

	Managing Stock with 3rd Party Service
	Starting our Stock Manager
	Creating the Product Inventory Field
	Checking the Stock Level
	Getting the Stock Level from Service

	Courses
	Changelog

